Investigation of depleted uranium contamination in south west of Iraq

A.T. Al-Kinani^{1,2*}, A.S. Al-Saidi³, S. Al-Anni³

¹Ministry of Science and Technology, Baghdad, Iraq
 ²Supreme Council for Environment and Natural Reserves, Doha, Qatar
 ³Al-Mustansiriya University, College of Medicine, Baghdad, Iraq

Background: The application of DU emanation for the first time contaminated certain areas in the south west region of Iraq after the second Gulf war (1991). These contaminated areas were discovered in 1994. Radioactive contamination was detected using the nuclear enterprise PCM5/1 in soil samples collected from two regions near by grazing lands. This study was done for assessment of DU contaminated soil in the regions under study. Materials and Methods: Portable detector was used for radiation measurement of the contaminated area. Samples from each region were selected and taken to Baghdad kept in plastic bags for gamma ray spectroscopy measurement. Gamma-ray spectroscopy system consists of high purity germanium (HPGE) detector surrounded by appropriate shield. The measurement of detector efficiency using (GDR) computer programs, supplied by Canberra Company was used to analyze gamma-ray spectrum. The activity of 234Th, 235U, 238Pa and other natural isotopes were measured. Results: The measurement by gamma -ray spectrometry system showed that six samples were heavily contaminated with DU, because the presence of ²⁴³Pa and ²³⁵U peak and the percentage ratio between ²³⁵U/²³⁸U were less than 0.005, when both international mathematical methods, namely IAEA and Kosovo, were used. Because of existence of radiation equilibrium between ²³⁴Th and ²³⁴Pa, the measurements should be accurate. **Conclusion:** The result showed that six of the samples were heavily contaminated with DU and there is a good agreement between the two methods. Because of the accuracy and ease of the Kosovo method, it is recommended for future investigations. Iran. J. Radiat. Res., 2005; 3 (3): 109-115

Keywords: Depleted uranium, soil contamination, south west of Iraq, Kosovo Method.

INTRODUCTION

weapons and electricity. Depleted Uranium (DU) is a low cost and readily available material. There is now more than 0.5 million tone of DU accumulated as nuclear waste. It has high density (19.05 g/cm³), 2.54 times

heavier than iron, with a high penetrating power⁽¹⁾, so it can be used for civilians and military industry. The main civilian application of DU includes counter-weights in aircraft, calorimeter, detectors, flywheels, and sinker bars⁽²⁾. In military it is used as penetrating and tanks heavy amour. The highly flammable metal fill with DU small bullet fired by aircraft is shown in figure 1. The weight of a small bullet is approximately 300 g of DU hitting the ground in a straight line; one to three meters a part, depending on the angle of the approach⁽³⁾.

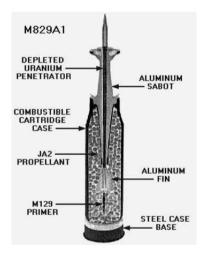


Figure 1. Schematic diagram of a DU round (WHO 2001).

Some of the bullets that miss their targets fall on the ground and could be considered as serious environmental pollutants that may contaminate food, surface water resources and ground water because the corrosion

*Corresponding author:

Dr. Athab T. Al-Kinani, Supreme Council for Environment and Natural Reserves, Doha, Qatar, P.O.Box: 7634

Fax: +974 4415246

E-mail: drathabalkinani@yahoo.com

penetrations in soil/water may be rapid (0.01-0.05 cm/y). Crancon⁽⁴⁾ in his study at French research site for DU penetrations development found that DU bullet reach to depth of 30 cm after 30 years and 10% of its DU contents became soluble at ground water. The highest penetrations caliber weight is 1Kg if fired from a tank.

Al-Kinani *et al.*⁽⁵⁾ found seven soil samples contaminated with DU near Basra city, south of Iraq. The ratio of ²³⁵U / ²³⁸U ranged between 0.00412-0.00351. Al-Dory⁽⁶⁾ showed that radiation equilibriums between ²³⁴Th and ²²⁶Ra in un-contaminated soil exist with a ratio between 0.68-1.16. For contaminated soil samples, the radiation equilibrium between ²³⁴T and ^{234m}Pa ranged between 0.928-0.956 indicating that the measurements were accurate. The aim of this work was to investigate DU contamination in the south west of Iraq by adapting the IAEA and Kosovo mathematical methods used for assessment of contaminated soil samples

MATERIALS AND METHODS

Depleted uranium has been detected in two regions located in the south west of Iraq by using PCM5 portable radiation detector device (NE-UK). The detection rate of 2-5000 count/second, make this device suitable for detection of gamma and beta emitting contaminants. It is consisted of scintillation material with ZnS sheet and FAG portable detector for dose measurement, provided by IAEA (with reading range between 0.00001-10 mSv/hour, German made). The samples of soil were collected at hot points and kept inside plastic bags for spectroscopy measurement. Control (background) soil samples were collected from region located far away from the destroyed tanks where the reading of desert by portable detector ranged between $0.07-0.09 \mu Sv/h$.

The two regions were Al-Nukhaib, in Karbala province, at south west of Iraq near Saudi border, located in the longitude between 42°-44° and latitude between 32°-34°, and Al-Salman, in Al-Muthanna government, which is located in the longitude between 44°-46° and latitude between 30°-32°. Figure 2 shows the location of sites under investigation on the Iraq map. Many of soil samples were collected from these regions. Five samples from Al-Nukhaib and five samples from Al-Salman region were chosen to do this study. Table 1 shows the location,

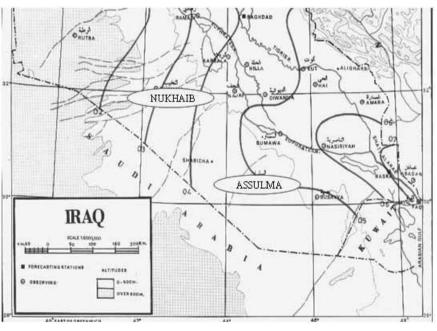


Figure 2. Iraq map (IMO, 2001), the regions under investigation are shown.

Samples Number	The Locations	Samples Type	Samples Code	Notes	
1	Al-Nukhaib	Soil	$SA_1.SPM$	Contaminated	
2	Al-Nukhaib	Soil	$SA_2.SPM$	Not - Contaminated	
3	Al-Nukhaib	Soil SA ₃ .SPN		Not - Contaminated	
4	Al-Nukhaib	Soil	$SA_4.SPM$	Contaminated	
5	Al-Nukhaib	Soil (Background)	$SA_5.SPM$	Not - Contaminated	
6	Al-Salman	Soil	SA ₆ .SPM	Contaminated	
7	Al-Salman	Fired Soil	SA ₇ .SPM	Contaminated	
8	Al-Salman	Small Particles of DU	mall Particles of DU SA ₈ .SPM		
9	Al-Salman	Soil (Background) SA ₉ .SPM N		Not - Contaminated	
10	Al-Salman	Bullet	$SA_{10}.SPM$	Contaminated	

Table 1. The location, type and code of collected samples.

type, and the code of samples.

After preparation of soil samples, they were stored in Marinelli Beaker for one reach secular radioactive equilibrium. Each sample was put on the crystal detector for a period of 36000 seconds. The high purity germanium (HPGe) detector was surrounded by a lead shield of 12 cm in thickness to protect the detector from background radiation, and lined inside with cadmium (0.8 mm) and copper (~0.4 mm) sheets to minimize the X-rays emitted due to interaction of gamma radiation with Pb. 152 Eu source was used for energy and efficiency calibration because of its suitable half life and the wide range of gamma ray energies produced during it's decay process (121.8 keV - 1409.1 keV). The efficiency of the detector was 40% with a resolution of 2.2 keV for 60Co at 1.332 MeV energy.

The radionuclide were detected by using PCA, GDR computers programs commonly used for identification of radionuclide by gamma ray spectroscopy (Canberra company). The net area under the curve for each decay isotopes of U-235, U-238, and K-40 were calculated.

There are two international methods used to calculate the percentage ratio for ²³⁵U / ²³⁸U:

1. The method that used by International Committee to detect the DU in Kosovo (3) as follow:

A. Conversion of the radioactivity of 238U to

mass percentage by dividing to 12.35 Bg/kg.

- B.From the mass percentage the percentage of ²³⁸U in background sample was subtracted to find the quantity of DU in soil samples.
- C.The percentage of depleted uranium (X%) was found by dividing the quantity of DU by the total concentration of ²³⁸U.
- D. According to the following equation Ru was found:

$$Ru = (0.72 - 0.52 \text{ X}) / (99.2745 + 0.5255 \text{ X}) \quad (1)$$

Where; X = the quantity of DU in soil samples, and Ru = the percentage between ^{235}U and ^{238}U .

- 2. The method used by IAEA to detect $DU^{(7)}$, is as follows:
- A.Calculate net counts (N₁, N₂, and N₃) in the peaks at the energies of E₁, E₂, and E₃; correct for contribution of background radiation.
- B.Calculate (q and F) values.

$$q = c \frac{P_2}{P_{UU}} \left(\frac{E_2}{E_1}\right)^a \frac{N_1}{N_2}$$
 (2)

$$F = 1 - f \frac{P_{1Ra}}{P_3} \left(\frac{E_1}{E_3}\right)^a \frac{N_3}{N_1}$$
 (3)

C. Then applying the following equation:

(4) $r_m = qF$ Where:

c = Conversion Factor (0.1555).

f = Correction Factor (1.04).

a = Slope of Efficiency Curve.

 P_{1U} , P_{1Ra} , P_{2} , and P_{3} = Emission probability of ²³⁵U, ²²⁶Ra, ^{234m}Pa, and ²¹⁴Bi respectively.

 E_1 , E_2 , and E_3 = Gamma ray energy of ²³⁵U, ²²⁶Ra, ^{234m}Pa, and ²¹⁴Bi respectively.

RESULTS

Contamination with DU was considered if the ratio between 235U/238U in samples was less than 0.005. From gamma ray spectrums, the peak of 234mPa and 235U radionuclide are not seen in non-contaminated samples (figure 3), but in contaminated samples these peaks detected by the were easily gamma spectrometry system. The radioactivity of 226Ra is calculated by subtracting the specific radioactivity of ²³⁵U which is calculated from the peak energy of 205.3 keV from the total specific radioactivity calculated for ²²⁶Ra using the peak energy of 186.21 keV. The result shown in table 2 is the specific radioactivity for $^{226}\mbox{Ra}$ and $^{234m}\mbox{Pa}$ in the contaminated samples, and for ²²⁶Ra only in the non-contaminated samples⁽⁸⁾.

From the specific radioactivity of ²³⁴Th and

^{234m}Pa the percentage between ²³⁴Th/^{234m}Pa are calculated for the contaminated samples (table 3). Existence of equilibrium between radionuclide means that the measurements were accurate. The percentage between ²³⁵U/²³⁸U (Ru) which has been calculated according to Kosovo method is shown in table 4. Also the percentage between ²³⁵U/²³⁸U (r_m) has been calculated using the IAEA method.

DISCUSSION

The ratio between 234Th/234Pa was in the range between 0.84-0.99 indicating that these isotopes were at radiation equilibrium for the first daughter nuclide of 238U series. Other radionuclide such as ²¹⁴Bi, and ²¹⁴Pb did not reach to equilibrium state with other isotopes, in spite of one month storage of the samples in Marinelli beaker. This might be due to generation of radon gas (222Rn) which can leak from the pores of the plastic container. Therefore, the concentration of ²¹⁴Bi, and ²¹⁴Pb found to be less than that of other isotopes. For reaching to radiation equilibrium state of these isotopes, samples must be stored in Marinelli beaker made of quartz to avoid leaking of radon gas^(9, 10).

Table 4 shows that the percentage ratio between 235U and 238U range between 0.020-

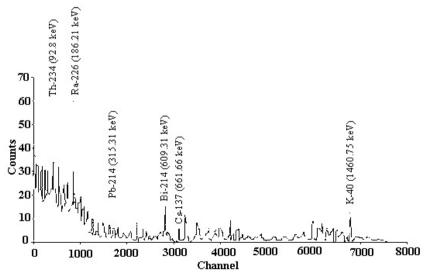


Figure 3. The spectrum of SA5 for un-contaminated soil samples with DU.

Table 2. The specific radioactivity (Bq/kg) for the specified radionuclide's for each sample.

Radio- nuclides	SA ₁ . SPM	SA ₂ . SPM	SA ₃ . SPM	SA ₄ . SPM	SA ₅ . SPM	SA ₆ . SPM	SA ₇ . SPM	SA ₈ . SPM	SA ₉ . SPM	SA ₁₀ . SPM
Th-234 92.80	13521.6 ± 42.6	74.8 ± 10.6	65.9 ± 11.7	31711.1 ± 148.2	48.5 ± 3.8	1809.3 ± 13.4	$430949.3 \\ \pm 450.8$	895377.6 ± 1216.7	60.9 ± 4.4	$1110495.7 \\ \pm 5962.1$
U+Ra+Pa 186.21	13933.0 ± 38.2	99.7 ± 10.5	88.4 ± 9.8	35550.0 ± 121.3	62.0 ± 3.4	1901.6 ± 17.1	450344.7 ± 205.5	925051.3 ± 1220.4	81.3 ± 3.4	$1217001.4 \\ \pm 2987.8$
U-235 205.31	186.6 ± 11.7			397.0 ± 15.3		20.1 ± 2.7	4053.1 ± 45.0	8617.5 ± 113.6		10665.5 ± 821.5
Pb-214 315.31	17.3 ± 1.4	13.8 ± 0.8	14.5 ± 0.8	25.3 ± 2.4	15.2 ± 0.3	21.2 ± 0.5	40.2 ± 5.8		23.1 ± 0.4	
Bi-214 609.31	15.4 ± 1.2	11.3 ± 0.8	12.9 ± 0.8	17.8 ± 2.0	15.3 ± 0.4	19.4 ± 0.6	33.7 ± 5.3		21.3 ± 0.4	
Cs-137 661.66	15.0 ± 0.8	5.4 ± 0.4	27.5 ± 0.7	17.0 ± 1.2	1.0 ± 0.1	20.7 ± 0.3			1.4 ± 0.2	
Pa-234m 1001.03	13630.1 ± 40.3			37807.6 ± 267.8		2007.0 ± 15.6	445852.8 ± 490.5	939170.7 ± 1221.2		$1207872.4 \\ \pm 4552.7$
K-40 1460.75	193.3 ± 8.8	158.3 ± 7.8	176.4 ± 7.7	253.1 ± 12.5	124.8 ± 2.9	446.9 ± 5.6	273.8 ± 15.4		229.5 ± 5.2	

Table 3. The percentage ratio calculated for ²³⁴Th/ ^{234m}Pa in samples.

Radio-nuclies		Th-234	U+Ra+Pa	U-235	Pb-214	Bi-214	Cs-137	Pa-234m	K-40
Energy (keV)		92.80	186.21	205.31	351.92	609.31	661.66	1001.03	1460.75
SA ₁ .SPM	Activity (Bq/kg)	13521.6	13933.0	186.6	17.3	15.4	15.0	13630.1	193.3
	Th ²³⁴ /Pa ^{234m}	0.99							
SA ₂ .SPM	Activity (Bq/kg)	74.8	99.7		13.8	11.3	5.4		158.3
	Th ²³⁴ /Pa ^{234m}								
SA ₃ .SPM	Activity (Bq/kg)	65.9	88.4		14.5	12.9	27.5		176.4
D213.D1 W1	Th ²³⁴ /Pa ^{234m}								
SA ₄ .SPM	Activity (Bq/kg)	31711.1	35550.0	397.0	25.3	17.8	17.0	37807.6	253.1
621 <u>4</u> .61111	Th ²³⁴ /Pa ^{234m}	0.84							
SA ₅ .SPM	Activity (Bq/kg)	31711.1	62.0		15.2	15.3	1.0		124.8
D215.D1 W1	Th ²³⁴ /Pa ^{234m}								
SA ₆ .SPM	Activity (Bq/kg)	1806.3	1901.6	20.1	21.2	19.4	20.7	2007.0	446.9
6116.61111	Th ²³⁴ /Pa ^{234m}	0.90							
SA ₇ .SPM	Activity (Bq/kg)	430949.3	450344.7	4053.1	40.2	33.7		445852.8	273.8
5217.5111	Th ²³⁴ /Pa ^{234m}	0.97							
SA ₈ .SPM	Activity (Bq/kg)	895377.6	925051.3	8617.5				939170.7	
D21g.D1 W1	Th ²³⁴ /Pa ^{234m}	0.95							
SA ₉ .SPM	Activity (Bq/kg)	60.95	81.3		23.1	21.3	1.4		229.5
DAG.DIW	Th ²³⁴ /Pa ^{234m}								
SA ₁₀ .SPM	Activity (Bq/kg)	1110495.7	1217001.4	10665.5				1207872.4	
023 ₁₀ .01 W	Th ²³⁴ /Pa ^{234m}				0.92				

Table 4. The percentage ratio of ²³⁵U/²³⁸U in samples.

Samples	U-238 Concen-tration mg/kg	[DU] Concen-tration mg/kg	X %	Quantity of Natural Uranium (1-X)	Ru	1/Ru
$SA_1.SPM$	1094.866	1090.979	99.645	0.00355	0.00200	500.000
$SA_2.SPM$	6.057	2.170	35.826	0.64174	0.00533	187.617
SA ₃ .SPM	5.336	1.449	27.155	0.72845	0.00583	171.527
SA ₄ SPM	2567.700	2563.813	99.849	0.00151	0.00200	500.000
SA ₅ .SPM	3.927	0.040	1.019	0.98981	0.00720	138.889
The average of background radiation = 48 Bq/kg = 3.887 mg/kg						
Samples	U-238 Concen-tration mg/kg	[DU] Concen-tration mg/kg	X %	Quantity of Natural Uranium (1-X)	Ru	1/Ru
SA ₆ .SPM	146.259	141.401	96.678	0.03322	0.00220	454.545
SA ₇ .SPM	34894.680	34889.822	99.986	0.00014	0.00200	500.000
	l					
SA ₈ .SPM	72500.211	72495.353	99.993	0.00007	0.00200	500.000
SA ₈ .SPM SA ₉ .SPM	72500.211 4.935	72495.353 0.077			0.00200 0.00717	500.000 139.470
<u> </u>	4.935		99.993	0.00007		

0.0022 for contaminated samples and 0.00533-00720 uncontaminated samples with DU which is in agreement well with other findings^(2, 5, 7). Table 5 shows the ratio ²³⁵U/ $^{\scriptscriptstyle 238}\text{U}$ calculated using both Kosovo and IAEA methods. As seen in figure 4 the calculated ratios were nearly similar according to the IAEA and Kosovo methods. Based on the obtained results, the Kosovo method was found more useful and accurate method for DU contamination measurement.

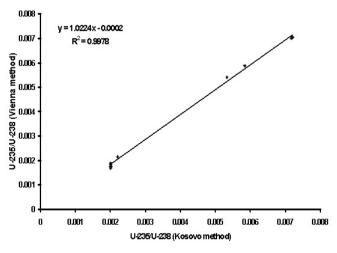


Figure 4. ²³⁵U/²³⁸U according to IAEA and Kosovo method.

Table 5. The ratio of ²³⁵U/²³⁸U calculated according to the IAEA and Kosovo methods.

Samples	235U/238U (KOSOVO)	235U/238U (VIENNA)
SA ₁ .SPM	0.00200	0.00169
SA ₂ .SPM	0.00533	0.00540
SA ₃ .SPM	0.00583	0.00588
SA ₄ .SPM	0.00200	0.00183
SA ₅ .SPM	0.00720	0.00704
SA ₆ .SPM	0.00220	0.00215
SA ₇ .SPM	0.00200	0.00189
SA ₈ .SPM	0.00200	0.00176
SA ₉ .SPM	0.00717	0.00701
SA ₁₀ .SPM	0.00200	0.00177

Investigation of depleted uranium contamination in Iraq

REFERENCES

- Guenther SH (1993-1995) Uranium projectiles: Severely maimed soldiers, deformed babies and dying children. Documentation of the after-math's of the Gulf War, Ahriman-Verlag, Germany.
- WHO (2001) Depleted Uranium Sources, Exposure and Health Effects. World Health Organization.
- 3. UNEP (2001) Depleted uranium in Kosovo, Scientific mission to Kosovo, post-conflict environmental assessment. United Nations Environmental Program.
- 4. Crancon P (2001) Migration of uranium. Ph. D thesis, University of Grenoble 1, France.
- 5. Al-Kinani AT, Twiej, Abdullah KO (2001) Investigations of DU contamination near Basra Iraqi city. *J Mathematics* &

- Physics Society, 16: 34-42.
- Al-Dory ME (2002) DU contamination near Basera city. M.Sc thesis Al-Mustanseriy University, College of Science. Baghdad, Iraq.
- Makarewicz M (2001) IAEA training course on depleted uranium in the environment.
- IAEA (1990) The Environmental behavior of Ra²²⁶. Technical report series, International Atomic Energy Agency; No.310, Vol.1, Vienna.
- Myrick TE, Berven BA, Haywood FF (1983) Determination of concentration of selected radionuclide in surface soil in USA. Health Physics, 45: 631-642.
- IAEA (1990) The Environmental behavior of Ra²²⁶.
 Technical report series, International Atomic Energy Agency; No. 310, Vol. 2, Vienna.